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Abstrae~In this paper, the heat conduction equation subject to an initial condition and to the specification 
of the energies on two portions which partition a finite, one-dimensional slab, is investigated. Once this 
inverse heat conduction problem is shown to be well-posed, a boundary element method (BEM) is 

developed for finding the solution numerically. ~ 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

The specification of energy over a certain part of a 
heat conductor relates physically to the specification 
of the relative heat content of a portion of the conduc- 
tor, whilst for diffusion problems this condition is 
equivalent to the specification of the fluid mass in a 
port ion of the diffusion domain. In the case of a one- 
dimensional, finite conductor, Cannon  [1] showed 
that when the temperature behaviour at one of the 
ends of the material is specified in advance, then there 
exists a unique temperature distribution in the con- 
ductor, which produces a specified energy over a given 
portion of the conductor. The purpose of this paper 
is to show that the existence and uniqueness result still 
holds in the weaker assumptions when no boundary 
condition is prescribed, but instead the energy is speci- 
fied on two portions which partition the finite slab 
geometry. Furthermore, a BEM is developed for find- 
ing the solution numerically. 

2. PROBLEM FORMULATION 

Consider the problem of finding the continuous 
temperature function T(x, t) in a finite homogeneous 
conductor of non-dimensional  length L = 1 and non- 
dimensional thermal diffusivity ~ = 1, satisfying the 
linear heat equation, namely : 

~T ~2T 
~ - ( x , t ) = ~ ( x , t ) e t  _'~ (x, t) E(0,1) x (0, oG) (1) 

subject to the continuous, initial condition To, i.e. 

T(x. 0) = T,,(x) x c [0, l] (2) 

and to the specification of the energies Eo(t) and E~ (t) 
over the time-dependent portions (0, s(t)) and (s(t), 1) 
for t > 0, of  the conductor, namely 

i i  ~(t) Eo (t) = T(x, t) dx 

El(t) = T(x, t )dx  te(O, o~,). 
(t) 

(3) 
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3. MATHEMATICAL ANALYSIS 

The result for the existence and uniqueness of the 
solution of equations (1)-(3) can be stated as follows. 

Theorem 1 (existence and uniqueness) 
If 

(a) T o t e ° ( [ 0 ,  1]); 
(b) E0. £ ,  ~ C ' ( [0 . .~ ] ) ,  Eo(0) = S~, ~°1 To(x)dx. F~,(O) = 

j.~lo~ To(x) dx;  
(c) s~ C([0,  oo]), inf,>os(t) > 0, sup,>0s(t) < 1; 
(d) T(0,0) = r0(0), T(1,0) = T0(1); 

then the inverse boundary  value problem (1)-(3) pos- 
sesses a unique continuous solution, T(x,t), which 
satisfies the continuous Dirichlet boundary conditions 

T(O,t) =Jo(t) T(1,t) = f l ( t )  t~[0, vo) (4) 

where J0 and./i are unknown continuous functions. 
Proof It will be shown that theorem 1 reduces to 

solving a pair of coupled Volterra integral equations 
of the second kind for J0 andf l ,  which degenerate into 
a single equation, which was considered by Cannon  
[1] when./i (t) is assumed known and identically taken 
to be zero. 

From the linearity of the partial differential heat 
equation (1), it suffices to consider the homogeneous 
initial condition case, i.e. To(x) - 0. Then, formally, 
in terms of the Dirichlet boundary  conditions (4), it 
is well known [2], that the solution of the problem (1), 
(2) and (4) is given by 
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7' (]0 
T(x, t) = 2 Jo (?~x(x' t -  ~)]o (r) dr 

' (?0 
+ 2 , ~ ( x -  1, t -  r).f, (r) dr 

where 

(5) 

O(x,t)= ~ K(x+2m, t) 
m = - -  

(4~t) 1:2 exp - (6) 

where 0 is called the theta function which is positive, 
continuous with all its partial derivatives continuous, 
K is the fundamental solution for the linear heat equa- 
tion and H is the Heaviside function. Using the speci- 
fication of the energies as given by equation (3), Fub- 
ini's theorem and that 0 is an even function in the 
space coordinate, we obtain 

Eo(t) 1 I ~"1 
2 - 2  ~ T(x,t) dx 

f = {O(O,t -r) -O(s( t ) , t -r )~[o(r)dr  
) 

i; + { O ( 1 - s ( t ) , t - r ) - O ( 1 , t - r ) } f l ( r ) d r  (7) 

El (t) 1 ( '  T(x, t) dx 
2 2 d,{,) 

S = {O(s(t), t - - r ) - -0( l ,  t-- r) }j0(r) dr 

i + { O ( O , t - O - O ( 1 - s ( t ) , t - r ) } f , ( r ) d r .  
) 

(8) 

Adding and subtracting equations (7) and (8) yields 

i: Eo(t)+E,(t)  _ {O(O,t-r) 
2 

- 0(1, t -  0} (J0(r) +Jl (r)) dr (9) 

i Eo( t ) -El ( t )  _ {O(O, t -O+O(1 , t - z )  
2 

;o - 2 0 ( s ( t ) , t - r ) } j o ( r ) d r -  {O(O, t - r )+O(1 , t -O 

--20(1--s(t) , t--r)l j](r)dT (10) 

which are coupled integral equations to be satisfied 
by the boundary temperature (4) of any solution of 
equations (1) and (2). 

At this stage, for the simplicity of the presentation, 
we consider the case s(t) = 1/2, although the analysis 

applies for any time-dependent interface s(t) satisfying 
condition (c). In this case, equation (10) simplifies to 
be 

Eo( t ) -  El (t) -fi{O(O,t-r)+O(1,t-r) 
2 1 (11) 

Clearly, since in the direct heat conduction problem 
the continuous solution of equation (1) is determined 
uniquely by boundary and initial data, there exists a 
unique continuous solution T(x,t) of the problem 
given by equations (1), (2) and (4) if, and only if, there 
exists a unique continuous solution (jo(t),./i(t)) of 
equations (9) and (11) satisfying f ) (O)=Ji (0)= 0. 
Therefore, the existence and uniqueness of the solu- 
tion of problem (9) and (11) is now investigated. 

Using equation (6) it can readily be seen that equa- 
tions (9) and (11 ) can be rewritten as 

f ' [,/; (~) +A (r)] G (t) + E~ (t) 
, ~ 4 ~ _ ~ i ,  2 d r -  2 

I 
t 

+ Oo(t-r)(./i,(O+.f,(r)) dr (12) 
) 

f ' [ / ; (r)  - f ,  (r)] dr - G ( 0 - E ,  (t) 
, (4n( t - r ) )  '2 2 

i 
t 

+ 0 , ( t - O ( A , ( r ) - f , ( r ) ) d r  (13) 

where 

O o ( t - z ) = K ( 1 , t - z ) +  ~ {-2K(2m,  t T) 
m = I 

+ K ( 2 m + l , t - r ) + K ( l - 2 m ,  t - r ) ]  (14) 

( ' )  Ol(t r ) = 2 K  ~ , t - r  - - K ( l , t - r )  

+ ,,,~=, { - K ( 2 m + l , t - r ) - K ( 1 - 2 m ,  t - r )  

Now the hypotheses (b)-(d) enable the inversion 
theorem for Abel integral equations [3], to be appli- 
cable to equations (12) and (13), and, following simi- 
larly the arguments from Cannon [1], to yield an equi- 
valent problem in terms of two uncoupled Volterra 
integral equations of the second kind, namely : 
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.fi} (z) +f, (z) = Qo (z) + £ (f0 (r) +jl  (O)Ko (z, z) dr 

(16) 

.fi} (z) -.f, (z) = Q, (z) + f{i (f} (z) -.,¢~ (z)) K, (z, r) dr 

where 

1 f:E'o(t)+E](t) 
Q,}(z) = 2rc~__ } ( z - t )  ~'2 

1 f-E'o(t)-Ei(t) 
Q , ( z ) = ~ 3 ~  , ( z - t )  '2 

K , ( z , z ) = ~ f / ( z - - ' )  L'2 ~O/(t- r) dt 

dt 

dt (18) 

i~{0,1}. 

We shall prove now that equations (18) and (19) are 
well-defined, i.e. the integrals involved are convergent, 
and derive some properties for the functions Q~ and 
K~ for i~ {0, 1}. 

From equation (18), and using hypothesis (b), we 
obtain 

2M(z)z ~,2 
IQ,(z)l ~< ie {0, 1} (20) 

7~ 112 

where 

m(z) = max {max,~10.~l IE0 (t) l, max,~t0..] IE~ (t) l }. 

(21) 

Hence, Q~ are continuous functions and Q~(0) = 0 for 
i e  {0, 1 }. Integrating by parts equation (19), we obtain 

K,.(z, r) = 2(z-t)'"2 dOi i 
~,,2 di- (t-r)l,U~ 

~Tf~ {lt-d20i + ( z - t ) "2 . ; - ( t - z )d t  i~ {0, 1}. (22) 

S(z'r) =8~T  f](z-t)"2exp ( 4 ( ~  r))  

× t_T)5,, (t_r)7, 2 + dt. (24) 

(17) Now. when x :~ 0, due to the presence of the 
exponential in equation (24) which decays to zero 
more rapidly than the powers of ( t -  z) as t"N r, it can 
be seen that the integrand in equation (24) is not 
singular provided that z > ~. Therefore, based on the 
analysis performed in equations (20)-(24), we have 
obtained that Qi are continuous functions with 
Qi(0) = 0 and Ki(z, r) are bounded by polynomials in 
( z - r )  ~2 and are two-dimensionally continuous in 
both variables for z > z. Having these properties then 
[1], the uncoupled Volterra integral equations of the 
second kind (16) and (17) possess the unique con- 
tinuous solutions (.[o+JD and (f0- /D,  respectively, (19) 
such that (fo+/D(0) = (f0-jD(0) = 0. Then, the indi- 
vidual boundary temperature functions fi) andJl exist 
and they are unique satisfying f,(0) =.[i(0) = 0. Fur- 
thermore, the stability of the solution is ensured from 
hypothesis (b) and from the theory of Volterra's inte- 
gral equations of the second kind as given by equa- 
tions (16) and (17). Hence, so far we have shown that 
the inverse problem (1)-(3) is well-posed. The analysis 
performed in the proof of theorem 1 enables us to 
state the following representation theorem. 

Theorem 2 (representation theorem) 
If the functions T 0, E0, E~ and s satisfy conditions 

(a) (d) from theorem 1, then the solution of the 
inverse boundary value problem (1)-(3) has the rep- 
resentation 

I 
I 

T(x, t) = [0(x-  ~, t) - 0 ( x +  ~, t)]To (0  d~ 
) 

I ' 80 
- 2  , ~ ( x ,  t-z)4}0(O dT 

In order to analyze the well-defineness of Ki in equa- 
tion (22), from equations (14) and (15) in which we 
remark that the first coordinate of summation of the 
kernels K is never zero, it is sufficient to consider the 
following generic expression 

( t t.2 8K x S(z,r) = - z-- ) T a ( .  ,t-Ot',;~ 

~: . 1'2 8 2 K  
~tZtz(x, t-0dt  (23) 

where x is a non-zero quantity. Using equation (6), 
and after some calculus, equation (23) may be recast 
in the form 

(" 80 
+ 2 J0 cT£(x-- 1, t -  r){h, (r) dr (25) 

if, and only if, {bo and 4h are continuous functions that 
satisfy 

E,, (0 + E, (t) 

f, = 2  [O(O,t-r)-O(1, t-r)][~o(r)+~(r)]d~ (26) 
} 
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E,, (t) - E, (t) 

f l ([~s(t) 
- , T,,(¢)~J,, [ O ( x - g . t ) - O ( x + g . t ) l d x  

£' t - [O(x-~ , t ) -O(x+~, t ) ]dx  d~ 

i = 2 [O(O,t-r)+O(1,t-O][05o(r)-05,(Oldr 
) 

4 f l  O(s(t), t--005o (z) dr 

+4  I i  O(s(t) - 1, t-r)051 (z) dr. (27) 

Proof. It is well known [2] that the solution of the 
direct problem given by equations (1), (2) and (4) is 
given by 

i' r(x,  t) = [O(x-~,O-O(x+~,t)]To(~)d ~ 
) 

C' c~O 
- 2 Jo c~x(x' t - z)./}, (,) dz 

' 30 , ,. 
+2  = - (x - l , t - r~ . l~ (z )  dz. (28) 

) C X  

E,, 0) - E, (t) 

F ~ f F'.I 
- , To(g){J~, [O(x-{ , t ) -O(x+~. . t )]dx  

£' t - [ O ( x - ~ , t ) - O ( x + ~ , t ) l d x  d{ 
(tl 

= 2 [0(0, t - z )  +0(1, t - r ) ] [ jo ( z ) - f ,  (z)] dr 
) 

- 4  O(s(t) , t -z) fo(r)dr 
) 

£, + 4 O(s(t)- 1, t -r)J~ (r) dr. 
) 

(32) 

Now the representation theorem stated in equations 
(25) (27) follows immediately by replacing f,  and Jl 
in equations (28), (31) and (32) by q50 and ~b~, respec- 
tively. 

At this stage, it should be noted that, although 
theoretically interesting, the representation theorem 2 
does not give explicitly the solution of the inverse 
problem (1)-(3). Therefore, the solution of the prob- 
lem (1) (3) can actually be obtained only numerically, 
as described in the next section. 

Integrating equation (28) and using the specification 
of the energies, as given by equation (3), yield 

Eo(t ) -  | [O(x-~,t)-O(x+~,t)lTo(~_)d~ dx 
,do 

f, = 2 [0(0, t--z)--O(s(t), t--r)]J;(z) dz 

+2 [ O ( s ( t ) - l , t - z ) - O ( - l , t - z ) ] f , ( z ) d z  (29) 
I 

£' {;o' } E , ( t ) -  [O(x-~, t ) -O(x+~, t )]To(~)d~ dx 
'(t) 

= 2 O(s(t), t--z) -0(1 ,  t-z)]./;~(z) dz 

I +2 [O(O, t - z ) -O(s (O- l , t - z ) ]J ; ( z )dz .  (30) 
I 

Adding and subtracting equations (29) and (30) yields 

Eo(t) + & (t) 

£, = 2 [O(O,t-r)-O(1, t -~)l[[o(r)+f.(O]dr (31) 
) 

4. NUMERICAL ANALYSIS 

Initially it should be noted that an attempt to find 
the numerical solution of the two uncoupled Volterra 
integral equations of the second kind (16) and (17) 
will be very cumbersome because of the complicated 
nature of the kernels Ki given by equation (19), via 
equations (6), (14) and (15), involving infinite series 
evaluations, and also because of the expressions of 
the free terms Qi given by equation (18) involving 
derivatives of the energies EM). In addition, it is worth 
noting that, in practice, seldom will cases measure 
smooth functions for the energy functions, as assumed 
in the hypothesis (b) of theorem 1. The most we can 
hope for from a practical measurement is a continuous 
function which usually is not smooth. In such a situ- 
ation, the continuous data &(t) can be mollified, i.e. 
filtered, into a more restricted class of functions, say 
C', s >~ 1, e.g. cubic splines, and then an approximate 
problem can be solved within the hypotheses (a) (d) 
of theorem 1. In order to overcome these difficulties, 
the numerical method employed in this study for solv- 
ing the problem (1) (3) is the BEM. Since the gov- 
erning heat conduction equation (1) is linear it is 
recognized [4] that in such a situation the BEM is the 
best numerical discretisation method. 

It is well known [5] that the solution of equations 
(1), (2) and (4) can be reformulated in an integral 
form as 
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q(x)T(x, t )  = oG(x, t ; O, v) T'(O, r) dr 

fo + G(x, t; l , r )T ' (1 ,  z) dr  

- G'(x, t ;O,z)T(O,r)dr 
) 

f - G'(x,t;  l , z ) T ( l , z ) d r  
0 

f' + G(x, t ;y ,O)To(y)dy  
0 

(33) 

where q(x) = 0.5 i f x ~  {0, 1} and q(x) = 1 i fx~(0 ,  1). 
Primes denote the differentiation with respect to the 
outward normal at the boundaries x =  0 and 
x = L = 1 of the finite slab [0, L] and 

G(x, t ; ~, ~) = K ( x -  ~, t -  z). (34) 

As the specification of  the energies given by equa- 
tions (3) is yet to be utilized, we integrate equation 
(33) to yield 

Eo(O = fi"~ ~x) I]i(6(x, t; o, r)T'(O, r ) 

+ G ( x ,  t; 1 ,r )T ' ( l ,~ ) )dz]dx  

- f f '£[fi(G'(x,t ,O,r)T(O,~) 

+G'(x, t; 1, r )T(1 , r ) )  d z l d x  

+2o q(X) )o G(x , t ;y ,O)ToO,)dydx (35) 

and a similar expression exists for E~(t). 
Since an analytical solution of  the integral equation 

(35) is basically impossible then a numerical approxi-  
mat ion is necessary. For  simplicity, in the formulat ion 
of the BEM applied in this section, constant time 
elements, i.e. the boundary temperature and heat flux 
are assumed constant over each time element, are used 
when the integral equation (35) is discretized. The 
discretization of equation (35) is global, i.e. non-mar-  
ching in time, and is such that  a time interval of  
interest, say [0, tf], is divided into N equidistant time 
elements on each boundary  x = 0 and x = L = 1, 
whilst the space interval [0, L] is divided into No cell 
elements. With this assumption, the approximat ion of 
the equation (35) results in 

- -  T'oj G(x, ii "0, r) dr 
, j O  / = 1  / I 

]} + T]i G(x ,~ ;  l , r )  dr  dx 
- - /  i 

; ]l + T~ i G'(x, ~; 1,r) dr dx 
, i 

+J0 r/(X) kk=t T~ G(x,{i;y,O)dy dx 
'k i 

i = 1 ,N (36) 

and a similar expression for Ej (~), where tj ~ and t i 
are the endpoints of a time element, T~ = (6 ~+ ti)/2, 
)'k- ~ and )'k are the endpoints of a cell element, f~. = 
(y,  ,+yk)/2,  Toj= T(0,~.), T , j =  T(I,~),  T'0j = 
7"(0, 0 ,  T~/= T'(I ,  ~) and T~0 = ToO~k). 

If  for i , j  = 1 , N , k =  1,N0 a n d / e  {0, 1}, we denote 

I; 1 X'i Jo ~ G(x ,~; l , r )  dr dx (37) 
i E 

Y i o = - j , ,  ~ G'(x,F~;l,r) dz dx (38) 
j I 

Z~k J,, ~i~v ) G(x,{ ,;y,O)dy dx (39) 
k i 

I Y,0, 
N 0 

~ X i l j  

(40) 

I Toj 
Tli (41) 

X ~ ",  ~ ) /  

L T~ 
then equation (36) can be rewritten as a system of 
linear equations, namely : 

Ax = b. (42) 

The number  of unknowns in equation (42) is the 
dimension of  the vector x, i.e. 4N, see equation (41). 
Clearly from equation (40), equation (42) provides us 
with N equations. Another  N equations are provided 
in a similar way from the expression for E~(t) anal- 
ogous to equations (35) and (36), only that the limits 
of  integration in these equations are from s(t) to l 
instead of from 0 to s(t). The remaining 2N equations 
are obtained by taking x on the boundary,  i.e. 
x e {0, 1 }, in equation (33). The latter derivation of the 
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2N equations are common in the boundary element 
methodology and, therefore, the details are omitted 

herein. 
Hence, at the end of  the numerical analysis per- 

formed in this section, the problem of finding the 
vector of  unknowns x defined by equation (41), 
reduces to solving a system of 4N linear equations 
with 4N unknowns. Since we have shown in Section 3 
that the inverse problem (1) (3) is well-posed, this 
system of equations will be well-conditioned and, 
therefore, a direct method, such as a Gaussian elim- 

ination procedure, can be used. 
Finally, we note that the integrals with respect to r 

and y in equations (37) (39) can be evaluated ana- 
lytically [6], whilst the integrals with respect to x can 
be evaluated numerically using a midpoint  rectangular 
or trapezoidal rule. In the next section the numerical 
results are compared with the exact solution of  a sim- 

ple benchmark test example. 

5. NUMERICAL RESULTS AND DISCUSSION 

In order to show the convergence and accuracy of  
the BEM developed in the previous section, we choose 
a simple benchmark test example, namely : 

s ( t ) = 0 . 5  T ( x , t ) = x Z + 2 t  ( x , t ) ~ ( O , l ) x ( O ,  1). 

(43) 

In this case, the initial and energies specification data 
given by equations (2) and (3) result immediately in 

T0(x) = x ~ Eo(t) = t + ~  EL(t) = t+]4. (44) 

The desired boundary data defined by equation (4) is 

then given by 

/i,(t) = 2 t  f , ( t )  = l + 2 t .  (45) 

The BEM numerical results are compared with the 
exact Dirichlet boundary data (45) in Fig. 1 for vari- 
ous numbers of  time elements N E { 10, 20, 40} and for 

a fixed number of  cells N~ = 20. 
From Fig. 1 it can be seen that the numerical results 

for / ; ( t )  and j l  (t) are in very good agreement with the 
exact values (45) even when a relative coarse mesh 
size, i.e. N = 10 boundary elements, is used for dis- 

cretization. 
It should be noted that, unlike other numerical 

methods, the BEM simultaneously provides the 
boundary temperature and the heat flux. The BEM 
numerical results for the heat fluxes are compared 
with their exact values, namely : 

?T  (}T 
q0(t) = - ~  (0, t ) = 0  q,( t)  = ~ - ( l , t )  = 2  

( .y (~X 

(46) 

in Fig. 2 for various numbers of  time elements 
N~{10,20,40} and for a fixed number of  cells 

N0 = 20. 
From Fig. 2 it can be seen that, as expected, the 

heat flux is more difficult to calculate accurately than 
the boundary temperature. Slightly larger errors are 
obtained near t = 0 due to the presence of  the corners 
(x, t) e {(0, 0),(1,0)}, which slow down the rate of  con- 
vergence of any numerical method that one may 

_ 

2 -  

1 

0 [ I I I I 

0.0 0.2 0.4 0.6 0.8 t 1.0 
Fig. 1. The BEM numerical results for fo(t) and fl(t),  obtained for a fixed number of cells N~ = 20 and 
various numbers of time elements, namely, N = 10 ( - - ) ,  N =  20 ( [] ), N = 40 ( - A )  and the exact 

solution ( - - )  given by equation (45). 
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qe(t) 

0.04- 
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t 
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I i 
i t 
i i 
i i 
i i 
I t 

i i t 

• i i i i , 

/ I I • t s  

i i 
i i I 
¢ i i 

] Ivt 

r 

0.2 
I I I 

0.4 0.6 0.8 

(b) 

I 
1.0 

(t) 

, ,  

2 . 0 4 - ]  A ~ , 

I , ,, , 
: ,, t ', 

I i i , " ,  

I L o • " . .  . 

2.0 

t i 

1 . 9 6  
i 
J 

I I I I 

0.0 0.2 0.4 0.6 0.8 t 1.0 
Fig. 2. The BEM numerical results for (a) qo(t) and (b) qJt), obtained for a fixed number of cells No = 20 
and various numbers of time elements, namely, N = 10 (- - - ) ,  N = 20 (-I-1-), N = 40 ( - ~ - )  and the exact 

solution ( - - - - )  given by equation (46). 

employ. However,  if  the mesh size is refined, in this 
case f rom N = 10 to N = 40, the convergence of  the 
numerical  results for qo(t) and  q~(t) towards  the exact 
values (46) is achieved. 

Once the boundary  tempera ture  and  heat  flux have 
been determined,  the tempera ture  dis t r ibut ion,  
T(x, t), inside the domain  can be obta ined  explicitly 
f rom equa t ion  (33). A l though  not  graphical ly illus- 
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trated, it is reported that the lines of constant tem- 
perature obtained numerically using the finer mesh 
size N = 40 and No = 20, were indistinguishable from 
those obtained using the exact solution given by equa- 
tion (43). 

Overall from Figs 1 and 2 it can be concluded that 
the BEM developed and tested in Sections 4 and 5, 
produces a stable, convergent and accurate numerical 
solution for the inverse well-posed problem (1)-(3). 

6. CONCLUSIONS 

The purpose of this paper was to extend the result 
of Cannon  [1] for solving the inverse heat conduction 
problem when no boundary condition is prescribed, 
but instead the energy is specified on two portions 
which partit ion a finite slab heat conductor. In such a 
formulation, the inverse problem reduces to solving 
two Volterra integral equations of the second kind, 
see equations (16) and (17), for which the existence 
and uniqueness of the boundary temperature have 
been established. Furthermore,  a BEM has been 
developed for finding the solution numerically. 
Finally, it should be noted that the results presented 
in this paper also hold il, instead of specifying the 
energies as given by equation (3), we prescribe the 
differential temperatures, namely : 

f','m ~T 
Do(t) = Jo ~ (x,t)  d x =  T(s(t),t) 

- T ( O , t )  tE(O,~)  (47) 

f l  ~T 
Dt (t) = ~ ( x ,  t) dx = T(1, t) 

( 0  

- T(s(t), t) tz(0, 0o) (48) 

but with the mathematical analysis in the heat flux, 
rather than in the boundary temperature as in equa- 
tion (4). 
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